Displaying 261 – 280 of 346

Showing per page

Riemann maps in almost complex manifolds

Bernard Coupet, Hervé Gaussier, Alexandre Sukhov (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove the existence of stationary discs in the ball for small almost complex deformations of the standard structure. We define a local analogue of the Riemann map and establish its main properties. These constructions are applied to study the local geometry of almost complex manifolds and their morphisms.

Rigidity of CR morphisms between compact strongly pseudoconvex CR manifolds

Stephen S.-T. Yau (2011)

Journal of the European Mathematical Society

Let X 1 and X 2 be two compact strongly pseudoconvex CR manifolds of dimension 2 n - 1 5 which bound complex varieties V 1 and V 2 with only isolated normal singularities in N 1 and N 2 respectively. Let S 1 and S 2 be the singular sets of V 1 and V 2 respectively and S 2 is nonempty. If 2 n - N 2 - 1 1 and the cardinality of S 1 is less than 2 times the cardinality of S 2 , then we prove that any non-constant CR morphism from X 1 to X 2 is necessarily a CR biholomorphism. On the other hand, let X be a compact strongly pseudoconvex CR manifold of...

Smoothness of Cauchy Riemann maps for a class of real hypersurfaces.

Hervé Gaussier (2001)

Publicacions Matemàtiques

We study the regularity problem for Cauchy Riemann maps between hypersurfaces in Cn. We prove that a continuous Cauchy Riemann map between two smooth C∞ pseudoconvex decoupled hypersurfaces of finite D'Angelo type is of class C∞.

Some properties of Reinhardt domains

Le Mau Hai, Nguyen Quang Dieu, Nguyen Huu Tuyen (2003)

Annales Polonici Mathematici

We first establish the equivalence between hyperconvexity of a fat bounded Reinhardt domain and the existence of a Stein neighbourhood basis of its closure. Next, we give a necessary and sufficient condition on a bounded Reinhardt domain D so that every holomorphic mapping from the punctured disk Δ * into D can be extended holomorphically to a map from Δ into D.

Special Toeplitz operators on strongly pseudoconvex domains.

Zeljko Cuckovic, Jeffery D. McNeal (2006)

Revista Matemática Iberoamericana

Toeplitz operators on strongly pseudoconvex domains in Cn, constructed from the Bergman projection and with symbol equal to a positive power of the distance to the boundary, are considered. The mapping properties of these operators on Lp, as the power of the distance varies, are established.

Sur la pseudo-convexité et la convexité polynomiale en dimension infinie

Philippe Noverraz (1973)

Annales de l'institut Fourier

Dans la première partie, nous étudions la pseudo-convexité dans les elc et montrons que, dans le cas normé comme dans le cas non normé, les diverses notions introduites coïncident. Dans la deuxième partie, nous étudions la convexité polynomiale et prouvons des théorèmes d’approximation du type Runge ou Oka-Weil.

Currently displaying 261 – 280 of 346