Weighted Bernstein-Markov property in ℂⁿ
We study the weighted Bernstein-Markov property for subsets in ℂⁿ which might not be bounded. An application concerning approximation of the weighted Green function using Bergman kernels is also given.
We study the weighted Bernstein-Markov property for subsets in ℂⁿ which might not be bounded. An application concerning approximation of the weighted Green function using Bergman kernels is also given.
For complete Reinhardt pairs “compact set - domain” K ⊂ D in ℂⁿ, we prove Zahariuta’s conjecture about the exact asymptotics , s → ∞, for the Kolmogorov widths of the compact set in C(K) consisting of all analytic functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser pluricapacity of K with respect to D.