The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Weighted Bernstein-Markov property in ℂⁿ

Nguyen Quang Dieu, Pham Hoang Hiep (2012)

Annales Polonici Mathematici

We study the weighted Bernstein-Markov property for subsets in ℂⁿ which might not be bounded. An application concerning approximation of the weighted Green function using Bergman kernels is also given.

Width asymptotics for a pair of Reinhardt domains

A. Aytuna, A. Rashkovskii, V. Zahariuta (2002)

Annales Polonici Mathematici

For complete Reinhardt pairs “compact set - domain” K ⊂ D in ℂⁿ, we prove Zahariuta’s conjecture about the exact asymptotics l n d s ( A K D ) - ( ( n ! s ) / τ ( K , D ) ) 1 / n , s → ∞, for the Kolmogorov widths d s ( A K D ) of the compact set in C(K) consisting of all analytic functions in D with moduli not exceeding 1 in D, τ(K,D) being the condenser pluricapacity of K with respect to D.

Currently displaying 1 – 2 of 2

Page 1