Page 1

Displaying 1 – 1 of 1

Showing per page

Hyperbolic measure of maximal entropy for generic rational maps of k

Gabriel Vigny (2014)

Annales de l’institut Fourier

Let f be a dominant rational map of k such that there exists s < k with λ s ( f ) > λ l ( f ) for all l . Under mild hypotheses, we show that, for A outside a pluripolar set of Aut ( k ) , the map f A admits a hyperbolic measure of maximal entropy log λ s ( f ) with explicit bounds on the Lyapunov exponents. In particular, the result is true for polynomial maps hence for the homogeneous extension of f to k + 1 . This provides many examples where non uniform hyperbolic dynamics is established.One of the key tools is to approximate the graph of a meromorphic...

Currently displaying 1 – 1 of 1

Page 1