Page 1

Displaying 1 – 15 of 15

Showing per page

Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree

Chin-Huei Chang, Hsuan-Pei Lee (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The Hartogs Theorem for holomorphic functions is generalized in two settings: a CR version (Theorem 1.2) and a corresponding theorem based on it for C k ¯ -closed forms at the critical degree, 0 k (Theorem 1.1). Part of Frenkel’s lemma in C k category is also...

Henkin-Ramirez formulas with weight factors

B. Berndtsson, Mats Andersson (1982)

Annales de l'institut Fourier

We construct a generalization of the Henkin-Ramírez (or Cauchy-Leray) kernels for the -equation. The generalization consists in multiplication by a weight factor and addition of suitable lower order terms, and is found via a representation as an “oscillating integral”. As special cases we consider weights which behave like a power of the distance to the boundary, like exp- ϕ with ϕ convex, and weights of polynomial decrease in C n . We also briefly consider kernels with singularities on subvarieties...

Hölder a priori estimates for second order tangential operators on CR manifolds

Annamaria Montanari (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

On a real hypersurface M in n + 1 of class C 2 , α we consider a local CR structure by choosing n complex vector fields W j in the complex tangent space. Their real and imaginary parts span a 2 n -dimensional subspace of the real tangent space, which has dimension 2 n + 1 . If the Levi matrix of M is different from zero at every point, then we can generate the missing direction. Under this assumption we prove interior a priori estimates of Schauder type for solutions of a class of second order partial differential equations...

Hölder and Lp estimates for the solutions of the ∂-equation in non-smooth strictly pseudoconvex domains.

Josep M. Burgués Badía (1990)

Publicacions Matemàtiques

Let D be a bounded strict pseudoconvex non-smooth domain in Cn. In this paper we prove that the estimates in Lp and Lipschitz classes for the solutions of the ∂-equation with Lp-data in regular strictly pseudoconvex domains (see [2]) are also valid for D. We also give estimates of the same type for the ∂b in the regular part of the boundary of these domains.

Hölder continuous solutions to Monge–Ampère equations

Jean-Pierre Demailly, Sławomir Dinew, Vincent Guedj, Pham Hoang Hiep, Sławomir Kołodziej, Ahmed Zeriahi (2014)

Journal of the European Mathematical Society

Let ( X , ω ) be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on X with L p right hand side, p > 1 . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range ( X , ω ) of the complex Monge-Ampère operator acting on ω -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with L p -density belong to ( X , ω ) and proving that ( X , ω ) has the...

Hölder regularity for solutions to complex Monge-Ampère equations

Mohamad Charabati (2015)

Annales Polonici Mathematici

We consider the Dirichlet problem for the complex Monge-Ampère equation in a bounded strongly hyperconvex Lipschitz domain in ℂⁿ. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is 1 , 1 and the right hand side has a density in L p ( Ω ) for some p > 1, and prove the Hölder continuity of the solution.

Currently displaying 1 – 15 of 15

Page 1