On a Monotonicity Property of Bessel Functions.
An orthogonal system of polynomials, arising from a second-order ordinary differential equation, is presented.
We construct a testing function space, which is equipped with the topology that is generated by Lν,p - multinorm of the differential operatorAx = x2 - x d/dx [x d/dx],and its k-th iterates Akx, where k = 0, 1, ... , and A0xφ = φ. Comparing with other testing-function spaces, we introduce in its dual the Kontorovich-Lebedev transformation for distributions with respect to a complex index. The existence, uniqueness, imbedding and inversion properties are investigated. As an application we find a solution...
In this paper we give an extension of -Pfaff-Saalschütz formula by means of Andrews-Askey integral. Applications of the extension are also given, which include an extension of -Chu-Vandermonde convolution formula and some other -identities.