Some results involving generalized hypergeometric polynomial and Bessel functions
We obtain some matrix elements of basis transformations in a representation space of the unimodular pseudo-orthogonal group. Using these elements, we derive some formulas for special functions.
We prove identities involving sums of Legendre and Jacobi polynomials. The identities are related to Green’s functions for powers of the invariant Laplacian and to the Minakshisundaram-Pleijel zeta function.
MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32In the first part of this survey paper we present a short account on some important properties of orthogonal polynomials on the real line, including computational methods for constructing coefficients in the fundamental three-term recurrence relation for orthogonal polynomials, and mention some basic facts on Gaussian quadrature rules. In the second part we discuss our Mathematica package Orthogonal Polynomials (see [2]) and show some applications to problems...
The paper provides a review of A.M. Mathai's applications of the theory of special functions, particularly generalized hypergeometric functions, to problems in stellar physics and formation of structure in the Universe and to questions related to reaction, diffusion, and reaction-diffusion models. The essay also highlights Mathai's recent work on entropic, distributional, and differential pathways to basic concepts in statistical mechanics, making use of his earlier research results in information...
We give a Chowla-Selberg type formula that connects a generalization of the eta-function to with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.