In praise of an elementary identity of Euler.
Integrals of logarithmic and hypergeometric functions are intrinsically connected with Euler sums. In this paper we explore many relations and explicitly derive closed form representations of integrals of logarithmic, hypergeometric functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers.
Les valeurs aux entiers pairs (strictement positifs) de la fonction de Riemann sont transcendantes, car ce sont des multiples rationnels de puissances de . En revanche, on sait très peu de choses sur la nature arithmétique des , pour entier. Apéry a démontré en 1978 que est irrationnel. Rivoal a prouvé en 2000 qu’une infinité de sont irrationnels, mais sans pouvoir en exhiber aucun autre que . Il existe plusieurs points de vue sur la preuve d’Apéry ; celui des séries hypergéométriques...