Displaying 261 – 280 of 462

Showing per page

On Hermite-Hermite matrix polynomials

M. S. Metwally, M. T. Mohamed, A. Shehata (2008)

Mathematica Bohemica

In this paper the definition of Hermite-Hermite matrix polynomials is introduced starting from the Hermite matrix polynomials. An explicit representation, a matrix recurrence relation for the Hermite-Hermite matrix polynomials are given and differential equations satisfied by them is presented. A new expansion of the matrix exponential for a wide class of matrices in terms of Hermite-Hermite matrix polynomials is proposed.

On some generalized Sister Celine’s polynomials

Mumtaz Ahmad Khan, Ajay Kumar Shukla (1999)

Czechoslovak Mathematical Journal

Certain generalizations of Sister Celine’s polynomials are given which include most of the known polynomials as their special cases. Besides, generating functions and integral representations of these generalized polynomials are derived and a relation between generalized Laguerre polynomials and generalized Bateman’s polynomials is established.

On some properties of Chebyshev polynomials

Hacène Belbachir, Farid Bencherif (2008)

Discussiones Mathematicae - General Algebra and Applications

Letting T n (resp. U n ) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences ( X k T n - k ) k and ( X k U n - k ) k for n - 2⎣n/2⎦ ≤ k ≤ n - ⎣n/2⎦ are two basis of the ℚ-vectorial space n [ X ] formed by the polynomials of ℚ[X] having the same parity as n and of degree ≤ n. Also T n and U n admit remarkableness integer coordinates on each of the two basis.

Currently displaying 261 – 280 of 462