Displaying 341 – 360 of 462

Showing per page

Recurrences for the coefficients of series expansions with respect to classical orthogonal polynomials

Stanislaw Lewanowicz (2002)

Applicationes Mathematicae

Let P k be any sequence of classical orthogonal polynomials. Further, let f be a function satisfying a linear differential equation with polynomial coefficients. We give an algorithm to construct, in a compact form, a recurrence relation satisfied by the coefficients a k in f = k a k P k . A systematic use of the basic properties (including some nonstandard ones) of the polynomials P k results in obtaining a low order of the recurrence.

Solution of option pricing equations using orthogonal polynomial expansion

Falko Baustian, Kateřina Filipová, Jan Pospíšil (2021)

Applications of Mathematics

We study both analytic and numerical solutions of option pricing equations using systems of orthogonal polynomials. Using a Galerkin-based method, we solve the parabolic partial differential equation for the Black-Scholes model using Hermite polynomials and for the Heston model using Hermite and Laguerre polynomials. We compare the obtained solutions to existing semi-closed pricing formulas. Special attention is paid to the solution of the Heston model at the boundary with vanishing volatility.

Currently displaying 341 – 360 of 462