Convolutions with hypergeometric functions.
Our primary goal in this preamble is to highlight the best of Vasil Popov’s mathematical achievements and ideas. V. Popov showed his extraordinary talent for mathematics in his early papers in the (typically Bulgarian) area of approximation in the Hausdorff metric. His results in this area are very well presented in the monograph of his advisor Bl. Sendov, “Hausdorff Approximation”.
We study the probability distribution of the location of a particle performing a cyclic random motion in . The particle can take n possible directions with different velocities and the changes of direction occur at random times. The speed-vectors as well as the support of the distribution form a polyhedron (the first one having constant sides and the other expanding with time t). The distribution of the location of the particle is made up of two components: a singular component (corresponding...