Radicals and units in Ramanujan's work
A method is given to find a recurrence relation for the coefficients of the series expansion of a function f with respect to classical orthogonal polynomials of a discrete variable, which follows from a linear difference equation satisfied by f.
We show that polynomials defined by recurrence relations with periodic coefficients may be represented with the help of Chebyshev polynomials of the second kind.
Let be any sequence of classical orthogonal polynomials. Further, let f be a function satisfying a linear differential equation with polynomial coefficients. We give an algorithm to construct, in a compact form, a recurrence relation satisfied by the coefficients in . A systematic use of the basic properties (including some nonstandard ones) of the polynomials results in obtaining a low order of the recurrence.
In the area of stress-strength models there has been a large amount of work as regards estimation of the reliability R = Pr(X2 < X1 ) when X1 and X2 are independent random variables belonging to the same univariate family of distributions. The algebraic form for R = Pr(X2 < X1 ) has been worked out for the majority of the well-known distributions including Normal, uniform, exponential, gamma, weibull and pareto. However, there are still many other distributions for which the form of R is...
This paper is concerned with the action of a special formally real Jordan algebra U on an Euclidean space E, with the decomposition of E under this action and with an application of this decomposition to the study of Bessel functions on the self-adjoint homogeneous cone associated to U.