On q-Euler numbers, q-Salié numbers and q-Carlitz numbers
Mathematics Subject Classification: 33D15, 44A10, 44A20The present paper deals with the evaluation of the q-Laplace transforms of a product of basic analogues of the Bessel functions. As applications, several useful special cases have been deduced.
We show that some partitions related to two of Ramanujan's mock theta functions are related to indefinite quadratic forms and real quadratic fields. In particular, we examine a third order mock theta function and a fifth order mock theta function.
We give a complete description of the boundary behaviour of the generalized hypergeometric functions, introduced by Faraut and Koranyi, on Cartan domains of rank 2. The main tool is a new integral representation for some spherical polynomials, which may be of independent interest.
In this paper, we define several new concepts in the borderline between linear algebra, Lie groups and q-calculus.We first introduce the ring epimorphism r, the set of all inversions of the basis q, and then the important q-determinant and corresponding q-scalar products from an earlier paper. Then we discuss matrix q-Lie algebras with a modified q-addition, and compute the matrix q-exponential to form the corresponding n × n matrix, a so-called q-Lie group, or manifold, usually with q-determinant...
2000 Mathematics Subject Classification: 33D60, 26A33, 33C60The present paper envisages the applications of Riemann-Liouville fractional q-integral operator to a basic analogue of Fox H-function. Results involving the basic hypergeometric functions like Gq(.), Jv(x; q), Yv(x; q),Kv(x; q), Hv(x; q) and various other q-elementary functions associated with the Riemann-Liouville fractional q-integral operator have been deduced as special cases of the main result.
An overpartition pair is a combinatorial object associated with the -Gauss identity and the summation. In this paper, we prove identities for certain restricted overpartition pairs using Andrews’ theory of recurrences for well-poised basic hypergeometric series and the theory of Bailey chains.