On a nonlinear fractional order differential inclusion.
This paper investigates a class of fractional functional integrodifferential inclusions with nonlocal conditions in Banach spaces. The existence of mild solutions of these inclusions is determined under mixed continuity and Carathéodory conditions by using strongly continuous operator semigroups and Bohnenblust-Karlin's fixed point theorem.
The (modified) two-parametric Mittag-Leffler function plays an essential role in solving the so-called fractional differential equations. Its asymptotics is known (at least for a subset of its domain and special choices of the parameters). The aim of the paper is to introduce a discrete analogue of this function as a solution of a certain two-term linear fractional difference equation (involving both the Riemann-Liouville as well as the Caputo fractional -difference operators) and describe its...
One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.
Numerical methods for fractional differential equations have specific properties with respect to the ones for ordinary differential equations. The paper discusses Euler methods for Caputo differential equation initial value problem. The common properties of the methods are stated and demonstrated by several numerical experiments. Python codes are available to researchers for numerical simulations.
In this paper, we find the formula of general solution for a generalized impulsive differential equations of fractional-order q ∈ (2, 3).
In this paper, we investigate oscillation results for the solutions of impulsive conformable fractional differential equations of the form tkDαpttkDαxt+rtxt+qtxt=0,t≥t0,t≠tk,xtk+=akx(tk−),tkDαxtk+=bktk−1Dαx(tk−),k=1,2,…. Some new oscillation results are obtained by using the equivalence transformation and the associated Riccati techniques.