Employing of some basic theory for class of fractional differential equations.
We use the genus theory to prove the existence and multiplicity of solutions for the fractional -Kirchhoff problem where is an open bounded smooth domain of , , with fixed, , is a numerical parameter, and are continuous functions.
We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.
Two-term semi-linear and two-term nonlinear fractional differential equations (FDEs) with sequential Caputo derivatives are considered. A unique continuous solution is derived using the equivalent norms/metrics method and the Banach theorem on a fixed point. Both, the unique general solution connected to the stationary function of the highest order derivative and the unique particular solution generated by the initial value problem, are explicitly constructed and proven to exist in an arbitrary...
This paper discusses the existence of mild solutions for a class of semilinear fractional evolution equations with nonlocal initial conditions in an arbitrary Banach space. We assume that the linear part generates an equicontinuous semigroup, and the nonlinear part satisfies noncompactness measure conditions and appropriate growth conditions. An example to illustrate the applications of the abstract result is also given.
The aim of this paper is to study the existence of solutions to a boundary value problem associated to a nonlinear fractional differential equation where the nonlinear term depends on a fractional derivative of lower order posed on the half-line. An appropriate compactness criterion and suitable Banach spaces are used and so a fixed point theorem is applied to obtain fixed points which are solutions of our problem.
In this paper, we discuss the existence of solutions for a boundary value problem of fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions. Our results include the cases when the multivalued map involved in the problem is (i) convex valued, (ii) lower semicontinuous with nonempty closed and decomposable values and (iii) nonconvex valued. In case (i) we apply a nonlinear alternative of Leray-Schauder type, in the second case we combine the nonlinear alternative...