Page 1

Displaying 1 – 8 of 8

Showing per page

Fractional BVPs with strong time singularities and the limit properties of their solutions

Svatoslav Staněk (2014)

Open Mathematics

In the first part, we investigate the singular BVP d d t c D α u + ( a / t ) c D α u = u , u(0) = A, u(1) = B, c D α u(t)|t=0 = 0, where is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems d d t c D α n u + ( a / t ) c D α n u = f ( t , u , c D β n u ) , u(0) = A, u(1) = B, c D α n u ( t ) t = 0 = 0 where a < 0, 0 < β n ≤ α n < 1, limn→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying...

Fractional positive continuous-time linear systems and their reachability

Tadeusz Kaczorek (2008)

International Journal of Applied Mathematics and Computer Science

A new class of fractional linear continuous-time linear systems described by state equations is introduced. The solution to the state equations is derived using the Laplace transform. Necessary and sufficient conditions are established for the internal and external positivity of fractional systems. Sufficient conditions are given for the reachability of fractional positive systems.

Fractional-order Bessel functions with various applications

Haniye Dehestani, Yadollah Ordokhani, Mohsen Razzaghi (2019)

Applications of Mathematics

We introduce fractional-order Bessel functions (FBFs) to obtain an approximate solution for various kinds of differential equations. Our main aim is to consider the new functions based on Bessel polynomials to the fractional calculus. To calculate derivatives and integrals, we use Caputo fractional derivatives and Riemann-Liouville fractional integral definitions. Then, operational matrices of fractional-order derivatives and integration for FBFs are derived. Also, we discuss an error estimate between...

Functional-differential equations with Riemann-Liouville integrals in the nonlinearities

Milan Medveď (2014)

Mathematica Bohemica

A sufficient condition for the nonexistence of blowing-up solutions to evolution functional-differential equations in Banach spaces with the Riemann-Liouville integrals in their right-hand sides is proved. The linear part of such type of equations is an infinitesimal generator of a strongly continuous semigroup of linear bounded operators. The proof of the main result is based on a desingularization method applied by the author in his papers on integral inequalities with weakly singular kernels....

Currently displaying 1 – 8 of 8

Page 1