Page 1

Displaying 1 – 4 of 4

Showing per page

Chaos synchronization of a fractional nonautonomous system

Zakia Hammouch, Toufik Mekkaoui (2014)

Nonautonomous Dynamical Systems

In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the effectiveness of the proposed methods.

Conflict-Controlled Processes Involving Fractional Differential Equations with Impulses

Matychyn, Ivan, Chikrii, Arkadii, Onyshchenko, Viktoriia (2012)

Mathematica Balkanica New Series

MSC 2010: 34A08, 34A37, 49N70Here we investigate a problem of approaching terminal (target) set by a system of impulse differential equations of fractional order in the sense of Caputo. The system is under control of two players pursuing opposite goals. The first player tries to bring the trajectory of the system to the terminal set in the shortest time, whereas the second player tries to maximally put off the instant when the trajectory hits the set, or even avoid this meeting at all. We derive...

Controllability of nonlinear implicit fractional integrodifferential systems

Krishnan Balachandran, Shanmugam Divya (2014)

International Journal of Applied Mathematics and Computer Science

In this paper, we study the controllability of nonlinear fractional integrodifferential systems with implicit fractional derivative. Sufficient conditions for controllability results are obtained through the notion of the measure of noncompactness of a set and Darbo's fixed point theorem. Examples are included to verify the result.

Co-solutions of algebraic matrix equations and higher order singular regular boundary value problems

Lucas Jódar, Enrique A. Navarro (1994)

Applications of Mathematics

In this paper we obtain existence conditions and a closed form of the general solution of higher order singular regular boundary value problems. The approach is based on the concept of co-solution of algebraic matrix equations of polynomial type that permits the treatment of the problem without considering an extended first order system as it has been done in the known literature.

Currently displaying 1 – 4 of 4

Page 1