Analytic solutions of nonlinear neutral and advanced differential equations.
We recall a recent extension of the classical Banach fixed point theorem to partially ordered sets and justify its applicability to the study of the existence and uniqueness of solution for fuzzy and fuzzy differential equations. To this purpose, we analyze the validity of some properties relative to sequences of fuzzy sets and fuzzy functions.
We discuss and exploit the Carathéodory theorem on existence and uniqueness of an absolutely continuous solution x: ℐ (⊂ ℝ) → X of a general ODE for the right-hand side ℱ : dom ℱ ( ⊂ ℝ × X) → X taking values in an arbitrary Banach space X, and a related result concerning an extension of x. We propose a definition of solvability of (*) admitting all connected ℐ and unifying the cases “dom ℱ is open” and “dom ℱ = ℐ × Ω for some Ω ⊂ X”. We show how to use the theorems mentioned above to get approximate...
In this paper we give some new results concerning solvability of the 1-dimensional differential equation with initial conditions. We study the basic theorem due to Picard. First we prove that the existence and uniqueness result remains true if is a Lipschitz function with respect to the first argument. In the second part we give a contractive method for the proof of Picard theorem. These considerations allow us to develop two new methods for finding an approximation sequence for the solution....
The behavior of the approximate solutions of two-dimensional nonlinear differential systems with variable coefficients is considered. Using a property of the approximate solution, so called conditional Ulam stability of a generalized logistic equation, the behavior of the approximate solution of the system is investigated. The obtained result explicitly presents the error between the limit cycle and its approximation. Some examples are presented with numerical simulations.
This paper is concerned with the existence of solutions for some class of functional integrodifferential equations via Leray-Schauder Alternative. These equations arised in the study of second order boundary value problems for functional differential equations with nonlinear boundary conditions.
Let be a Carath’eodory’s function. Let , with , and be two real sequences. In this paper, the family of boundary value problems is considered. It is proved that these boundary value problems admit at least a solution for each , where is a suitable integer. Some particular cases, obtained by specializing the sequence , are pointed out. Similar results are also proved for the Picard problem.