Displaying 521 – 540 of 730

Showing per page

Some properties of third order differential operators

Mariella Cecchi, Zuzana Došlá, Mauro Marini (1997)

Czechoslovak Mathematical Journal

Consider the third order differential operator L given by L ( · ) 1 a 3 ( t ) d d t 1 a 2 ( t ) d d t 1 a 1 ( t ) d d t ( · ) and the related linear differential equation L ( x ) ( t ) + x ( t ) = 0 . We study the relations between L , its adjoint operator, the canonical representation of L , the operator obtained by a cyclic permutation of coefficients a i , i = 1 , 2 , 3 , in L and the relations between the corresponding equations. We give the commutative diagrams for such equations and show some applications (oscillation, property A).

Stokes phenomenon, multisummability and differential Galois groups

Michèle Loday-Richaud (1994)

Annales de l'institut Fourier

We precise the cohomological analysis of the Stokes phenomenon for linear differential systems due to Malgrange and Sibuya by making a rigid natural choice of a unique cocycle (called a Stokes cocyle) in every cohomological class. And we detail an algebraic algorithm to reduce any cocycle to its cohomologous Stokes form. This gives rise to an almost algebraic definition of sums for formal solutions of systems which we compare to the most usual ones. We also use this construction to the Stokes cocycle...

Currently displaying 521 – 540 of 730