Galois groups and elementary solutions of some linear differential equations.
We consider the Gaudin model associated to a point z ∈ ℂⁿ with pairwise distinct coordinates and to the subspace of singular vectors of a given weight in the tensor product of irreducible finite-dimensional sl₂-representations, [G]. The Bethe equations of this model provide the critical point system of a remarkable rational symmetric function. Any critical orbit determines a common eigenvector of the Gaudin hamiltonians called a Bethe vector. In [ReV], it was shown that for generic...
Definitions, properties, examples and applications of generalized analytic functions introduced by B. Ziemian are presented.
Let , be an -th order differential operator, be its adjoint and be positive functions. It is proved that the self-adjoint equation is nonoscillatory at if and only if the equation is nonoscillatory at . Using this result a new necessary condition for property BD of the self-adjoint differential operators with middle terms is obtained.
In this paper first order systems of linear of ODEs are considered. It is shown that these systems admit unique solutions in the Colombeau algebra .