Comparison results for impulsive delay differential inequalities and equations.
MSC 2010: 34A08, 34A37, 49N70Here we investigate a problem of approaching terminal (target) set by a system of impulse differential equations of fractional order in the sense of Caputo. The system is under control of two players pursuing opposite goals. The first player tries to bring the trajectory of the system to the terminal set in the shortest time, whereas the second player tries to maximally put off the instant when the trajectory hits the set, or even avoid this meeting at all. We derive...
We give sufficient conditions for a diffeomorphism in the plane to be analytically conjugate to a shift in a complex neighborhood of a segment of an invariant curve. For a family of functions close to the identity uniform estimates are established. As a consequence an exponential upper estimate for splitting of separatrices is established for diffeomorphisms of the plane close to the identity. The constant in the exponent is related to the width of the analyticity domain of the limit flow separatrix....
The problem of continuous dependence for inverses of fundamental matrices in the case when uniform convergence is violated is presented here.
In this article on quasidifferential equation with non-fixed time of impulses we consider the continuous dependence of the solutions on the initial conditions as well as the mappings defined by these equations. We prove general theorems for quasidifferential equations from which follows corresponding results for differential equations, differential inclusion and equations with Hukuhara derivative.
In this paper, we establish the controllability conditions for a finite-dimensional dynamical control system modelled by a linear impulsive matrix Lyapunov ordinary differential equations having multiple constant time-delays in control for certain classes of admissible control functions. We characterize the controllability property of the system in terms of matrix rank conditions and are easy to verify. The obtained results are applicable for both autonomous (time-invariant) and non-autonomous (time-variant)...
This article considers a class of finite-dimensional linear impulsive time-varying systems for which various sufficient and necessary algebraic criteria for complete controllability, including matrix rank conditions are established. The obtained controllability results are further synthesised for the time-invariant case, and under some special conditions on the system parameters, we obtain a Popov-Belevitch-Hautus (PBH)-type rank condition which employs eigenvalues of the system matrix for the investigation...
The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main result of...