Loading [MathJax]/extensions/MathZoom.js
A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.
We consider an ordinary or stochastic nonlinear equation with generalized coefficients as an equation in differentials in the algebra of new generalized functions in the sense of [8]. Consequently, the solution of such an equation is a new generalized function. We formulate conditions under which the solution of a given equation in the algebra of new generalized functions is associated with an ordinary function or process. Moreover the class of all possible associated functions and processes is...
A theorem on estimates of solutions of impulsive parabolic equations by means of solutions of impulsive ordinary differential equations is proved. An application to the population dynamics is given.
We study the existence and positivity of solutions of a highly nonlinear periodic differential equation. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ a modification of Krasnoselskii’s fixed point theorem introduced by T. A. Burton ([4], Theorem 3) to show the existence and positivity of solutions of the equation.
Applying two three critical points theorems, we prove the existence of at least three anti-periodic solutions for a second-order impulsive differential inclusion with a perturbed nonlinearity and two parameters.
In this paper we study the existence of solutions for impulsive differential equations with state dependent delay. Our results are based on the Leray–Schauder nonlinear alternative and Burton–Kirk fixed point theorem for the sum of two operators.
Currently displaying 1 –
20 of
25