Displaying 81 – 100 of 1042

Showing per page

Affine-invariant monotone iteration methods with application to systems of nonlinear two-point boundary value problems

Rudolf L. Voller (1992)

Applications of Mathematics

In this paper we present a new theorem for monotone including iteration methods. The conditions for the operators considered are affine-invariant and no topological properties neither of the linear spaces nor of the operators are used. Furthermore, no inverse-isotony is demanded. As examples we treat some systems of nonlinear ordinary differential equations with two-point boundary conditions.

An existence and multiplicity result for a periodic boundary value problem

Boris Rudolf (2008)

Mathematica Bohemica

A periodic boundary value problem for nonlinear differential equation of the second order is studied. Nagumo condition is not assumed on a part of nonlinearity. Existence and multiplicity results are proved using the method of lower and upper solutions. Results are applied to the generalized Liénard oscillator.

Currently displaying 81 – 100 of 1042