Displaying 101 – 120 of 159

Showing per page

On the existence of multiple periodic solutions for the vector p -Laplacian via critical point theory

Haishen Lü, Donal O'Regan, Ravi P. Agarwal (2005)

Applications of Mathematics

We study the vector p -Laplacian - ( | u ' | p - 2 u ' ) ' = F ( t , u ) a.e. t [ 0 , T ] , u ( 0 ) = u ( T ) , u ' ( 0 ) = u ' ( T ) , 1 < p < . ( * ) We prove that there exists a sequence ( u n ) of solutions of ( * ) such that u n is a critical point of ϕ and another sequence ( u n * ) of solutions of ( * ) such that u n * is a local minimum point of ϕ , where ϕ is a functional defined below.

On the existence of multiple solutions for a nonlocal BVP with vector-valued response

Andrzej Nowakowski, Aleksandra Orpel (2006)

Czechoslovak Mathematical Journal

The existence of positive solutions for a nonlocal boundary-value problem with vector-valued response is investigated. We develop duality and variational principles for this problem. Our variational approach enables us to approximate solutions and give a measure of a duality gap between the primal and dual functional for minimizing sequences.

On the existence of one-signed periodic solutions of some differential equations of second order

Jan Ligęza (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We study the existence of one-signed periodic solutions of the equations x ' ' ( t ) - a 2 ( t ) x ( t ) + μ f ( t , x ( t ) , x ' ( t ) ) = 0 , x ' ' ( t ) + a 2 ( t ) x ( t ) = μ f ( t , x ( t ) , x ' ( t ) ) , where μ > 0 , a : ( - , + ) ( 0 , ) is continuous and 1-periodic, f is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.

On the existence of solutions for nonlinear impulsive periodic viable problems

Tiziana Cardinali, Raffaella Servadei (2004)

Open Mathematics

In this paper we prove the existence of periodic solutions for nonlinear impulsive viable problems monitored by differential inclusions of the type x′(t)∈F(t,x(t))+G(t,x(t)). Our existence theorems extend, in a broad sense, some propositions proved in [10] and improve a result due to Hristova-Bainov in [13].

On the generalized boundary value problem

Boris Rudolf (2000)

Archivum Mathematicum

In the paper it is proved that the generalized linear boundary value problem generates a Fredholm operator. Its index depends on the number of boundary conditions. The existence results of Landesman-Lazer type are given as an application to nonlinear problems by using dual generalized boundary value problems.

Currently displaying 101 – 120 of 159