Displaying 141 – 160 of 164

Showing per page

Singular problems on the half-line

Irena Rachůnková, Jan Tomeček (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The paper investigates singular nonlinear problems arising in hydrodynamics. In particular, it deals with the problem on the half-line of the form ( p ( t ) u ' ( t ) ) ' = p ( t ) f ( u ( t ) ) , u ' ( ...

Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity

Qingliu Yao (2011)

Applications of Mathematics

We study the existence of a solution to the nonlinear fourth-order elastic beam equation with nonhomogeneous boundary conditions u ( 4 ) ( t ) = f t , u ( t ) , u ' ( t ) , u ' ' ( t ) , u ' ' ' ( t ) , a.e. t [ 0 , 1 ] , u ( 0 ) = a , u ' ( 0 ) = b , u ( 1 ) = c , u ' ' ( 1 ) = d , where the nonlinear term f ( t , u 0 , u 1 , u 2 , u 3 ) is a strong Carathéodory function. By constructing suitable height functions of the nonlinear term f ( t , u 0 , u 1 , u 2 , u 3 ) on bounded sets and applying the Leray-Schauder fixed point theorem, we prove that the equation has a solution provided that the integration of some height function has an appropriate value.

Strong singularities in mixed boundary value problems

Irena Rachůnková (2006)

Mathematica Bohemica

We study singular boundary value problems with mixed boundary conditions of the form ( p ( t ) u ' ) ' + p ( t ) f ( t , u , p ( t ) u ' ) = 0 , lim t 0 + p ( t ) u ' ( t ) = 0 , u ( T ) = 0 , where [ 0 , T ] . We assume that 2 , f satisfies the Carathéodory conditions on ( 0 , T ) × p C ...

Studies on BVPs for IFDEs involved with the Riemann-Liouville type fractional derivatives

Yuji Liu (2016)

Nonautonomous Dynamical Systems

In this article, we present a new method for converting the boundary value problems for impulsive fractional differential systems involved with the Riemann-Liouville type derivatives to integral systems, some existence results for solutions of a class of boundary value problems for nonlinear impulsive fractional differential systems at resonance case and non-resonance case are established respectively. Our analysis relies on the well known Schauder’s fixed point theorem and coincidence degree theory....

Subgroups of odd depth—a necessary condition

Sebastian Burciu (2013)

Czechoslovak Mathematical Journal

This paper gives necessary and sufficient conditions for subgroups with trivial core to be of odd depth. We show that a subgroup with trivial core is an odd depth subgroup if and only if certain induced modules from it are faithful. Algebraically this gives a combinatorial condition that has to be satisfied by the subgroups with trivial core in order to be subgroups of a given odd depth. The condition can be expressed as a certain matrix with { 0 , 1 } -entries to have maximal rank. The entries of the matrix...

Systems of singular BVPs - existence of solutions and their properties

Aleksandra Orpel (2014)

Banach Center Publications

We discuss the existence and properties of solutions for systems of singular second-order ODEs in both sublinear and superlinear cases. Our approach is based on the variational method enriched by some topological ideas. We also investigate the continuous dependence of solutions on functional parameters.

Unbounded solutions of BVP for second order ODE with p -Laplacian on the half line

Yuji Liu, Patricia J. Y. Wong (2013)

Applications of Mathematics

By applying the Leggett-Williams fixed point theorem in a suitably constructed cone, we obtain the existence of at least three unbounded positive solutions for a boundary value problem on the half line. Our result improves and complements some of the work in the literature.

Currently displaying 141 – 160 of 164