Existence of solutions and nonnegative solutions for prescribed variable exponent mean curvature impulsive system initialized boundary value problems.
In this work, we are interested in the existence of solutions for a class of first order boundary value problems (BVPs for short). We give new sufficient conditions under which the considered problems have at least one solution, one nonnegative solution and two non trivial nonnegative solutions, respectively. To prove our main results we propose a new approach based upon recent theoretical results. The results complement some recent ones.
Existence principles for solutions of singular differential systems satisfying nonlocal boundary conditions are stated. Here is a homeomorphism onto and the Carathéodory function may have singularities in its space variables. Applications of the existence principles are given.
The existence of single and multiple nonnegative solutions for singular positone boundary value problems to the delay one-dimensional p-Laplacian is discussed. Throughout our nonlinearity f(·,y) may be singular at y = 0.
Estudiamos la existencia de soluciones del sistema elíptico no lineal Δu + |∇u| = p(|x|)f(v), Δv + |∇v| = q(|x|)g(u) en Ω que explotan en el borde. Aquí Ω es un dominio acotado de RN o el espacio total. Las nolinealidades f y g son funciones continuas positivas mientras que los potenciales p y q son funciones continuas que satisfacen apropiadas condiciones de crecimiento en el infinito. Demostramos que las soluciones explosivas en el borde dejan de existir si f y g son sublineales. Esto se tiene...