Higher order branching of periodic orbits from polynomial isochrones.
Let X be a homogeneous polynomial vector field of degree 2 on S2 having finitely many invariant circles. Then, we prove that each invariant circle is a great circle of S2, and at most there are two invariant circles. We characterize the global phase portrait of these vector fields. Moreover, we show that if X has at least an invariant circle then it does not have limit cycles.
The aim of this paper is to study the steady states of the mathematical models with delay kernels which describe pathogen-immune dynamics of infectious diseases. In the study of mathematical models of infectious diseases it is important to predict whether the infection disappears or the pathogens persist. The delay kernel is described by the memory function that reflects the influence of the past density of pathogen in the blood and it is given by a nonnegative bounded and normated function k defined...
This paper is concerned with a three-species Lotka-Volterra food chain system with multiple delays. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the stability of the positive equilibrium and existence of Hopf bifurcations are investigated. Furthermore, the direction of bifurcations and the stability of bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations....
Continuous planar piecewise linear systems with two linear zones are considered. Due to their low differentiability specific techniques of analysis must be developed. Several bifurcations giving rise to limit cycles are pointed out.
Symmetric piecewise linear bi-dimensional systems are very common in control engineering. They constitute a class of non-differentiable vector fields for which classical Hopf bifurcation theorems are not applicable. For such systems, sufficient and necessary conditions for bifurcation of a limit cycle from the periodic orbit at infinity are given.