Page 1

Displaying 1 – 13 of 13

Showing per page

Enrichment Paradox Induced by Spatial Heterogeneity in a Phytoplankton - Zooplankton System

J.-C. Poggiale, M. Gauduchon, P. Auger (2008)

Mathematical Modelling of Natural Phenomena

This paper is devoted to the study of a predator-prey model in a patchy environment. The model represents the interactions between phytoplankton and zooplankton in the water column. Two patches are considered with respect to light availability: one patch is associated to the surface layer, the second patch describes the bottom layer. We show that this spatial heterogeneity may destabilize the predator-prey system, even in oligotrophic system where the nutrient is low enough to avoid ”paradox-enrichment”...

Examples of bifurcation of periodic solutions to variational inequalities in κ

Milan Kučera (2000)

Czechoslovak Mathematical Journal

A bifurcation problem for variational inequalities U ( t ) K , ( U ˙ ( t ) - B λ U ( t ) - G ( λ , U ( t ) ) , Z - U ( t ) ) 0 for all Z K , a.a. t 0 is studied, where K is a closed convex cone in κ , κ 3 , B λ is a κ × κ matrix, G is a small perturbation, λ a real parameter. The main goal of the paper is to simplify the assumptions of the abstract results concerning the existence of a bifurcation of periodic solutions developed in the previous paper and to give examples in more than three dimensional case.

Existence and bifurcation results for a class of nonlinear boundary value problems in ( 0 , )

Wolfgang Rother (1991)

Commentationes Mathematicae Universitatis Carolinae

We consider the nonlinear Dirichlet problem - u ' ' - r ( x ) | u | σ u = λ u in ( 0 , ) , u ( 0 ) = 0 and lim x u ( x ) = 0 , and develop conditions for the function r such that the considered problem has a positive classical solution. Moreover, we present some results showing that λ = 0 is a bifurcation point in W 1 , 2 ( 0 , ) and in L p ( 0 , ) ( 2 p ) .

Existence of one-signed solutions of nonlinear four-point boundary value problems

Ruyun Ma, Ruipeng Chen (2012)

Czechoslovak Mathematical Journal

In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems - u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) and u ' ' + M u = r g ( t ) f ( u ) , u ( 0 ) = u ( ε ) , u ( 1 ) = u ( 1 - ε ) , where ε ( 0 , 1 / 2 ) , M ( 0 , ) is a constant and r > 0 is a parameter, g C ( [ 0 , 1 ] , ( 0 , + ) ) , f C ( , ) with s f ( s ) > 0 for s 0 . The proof of the main results is based upon bifurcation techniques.

Currently displaying 1 – 13 of 13

Page 1