On the existence of almost periodic Lyapunov functions for impulsive differential equations.
The stability properties of solutions of the differential system which represents the considered model for the Belousov - Zhabotinskij reaction are studied in this paper. The existence of oscillatory solutions of this system is proved and a theorem on separation of zero-points of the components of such solutions is established. It is also shown that there exists a periodic solution.
The unstable properties of the linear nonautonomous delay system , with nonconstant delay , are studied. It is assumed that the linear system is unstable, the instability being characterized by a nonstable manifold defined from a dichotomy to this linear system. The delay is assumed to be continuous and bounded. Two kinds of results are given, those concerning conditions that do not include the properties of the delay function and the results depending on the asymptotic properties of the...
Our aim in this paper is to present sufficient conditions under which all solutions of (1.1) tend to zero as .