On the Asymptotic Relationship at Infinity between the solutions of two Differential Systems
We study the existence of global canard surfaces for a wide class of real singular perturbation problems. These surfaces define families of solutions which remain near the slow curve as the singular parameter goes to zero.
We prove the periodicity of all H2-local minimizers with low energy for a one-dimensional higher order variational problem. The results extend and complement an earlier work of Stefan Müller which concerns the structure of global minimizer. The energy functional studied in this work is motivated by the investigation of coherent solid phase transformations and the competition between the effects from regularization and formation of small scale structures. With a special choice of a bilinear double...
Este trabajo está consagrado al estudio de un problema de perturbación singular que aparece en la teoría de la elasticidad.
Este artículo es continuación de (I). Está consagrado al estudio de un problema de perturbación singular proveniente de la teoría de la elasticidad.