Page 1

Displaying 1 – 9 of 9

Showing per page

Boundary Data Maps for Schrödinger Operators on a Compact Interval

S. Clark, F. Gesztesy, M. Mitrea (2010)

Mathematical Modelling of Natural Phenomena

We provide a systematic study of boundary data maps, that is, 2 × 2 matrix-valued Dirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated with one-dimensional Schrödinger operators on a compact interval [0, R] with separated boundary conditions at 0 and R. Most of our results are formulated in the non-self-adjoint context. Our principal results include explicit representations of these boundary data maps in terms of the resolvent...

Boundary layer phenomenon for three -point boundary value problem for the nonlinear singularly perturbed systems

Robert Vrabel (2011)

Kybernetika

This paper deals with the three-point boundary value problem for the nonlinear singularly perturbed second-order systems. Especially, we focus on an analysis of the solutions in the right endpoint of considered interval from an appearance of the boundary layer point of view. We use the method of lower and upper solutions combined with analysis of the integral equation associated with the class of nonlinear systems considered here.

Currently displaying 1 – 9 of 9

Page 1