-integrability test for discrete equations via multiple scale expansions.
We prove an existence theorem for connected branches of solutions to nonlinear operator equations in Banach spaces. This abstract result is applied to the asymptotically equivalent solutions to nonlinear ordinary differential equations.
It is established convergence to a particular equilibrium for weak solutions of abstract linear equations of the second order in time associated with monotone operators with nontrivial kernel. Concerning nonlinear hyperbolic equations with monotone and conservative potentials, it is proved a general asymptotic convergence result in terms of weak and strong topologies of appropriate Hilbert spaces. It is also considered the stabilization of a particular equilibrium via the introduction of an asymptotically...
It is established convergence to a particular equilibrium for weak solutions of abstract linear equations of the second order in time associated with monotone operators with nontrivial kernel. Concerning nonlinear hyperbolic equations with monotone and conservative potentials, it is proved a general asymptotic convergence result in terms of weak and strong topologies of appropriate Hilbert spaces. It is also considered the stabilization of a particular equilibrium via the introduction of an asymptotically...
We consider the second order initial value problem in a Hilbert space, which is a singular perturbation of a first order initial value problem. The difference of the solution and its singular limit is estimated in terms of the small parameter The coefficients are commuting self-adjoint operators and the estimates hold also for the semilinear problem.