Page 1 Next

Displaying 1 – 20 of 70

Showing per page

On asymptotic properties of a strongly nonlinear differential equation

Ladislav Adamec (2001)

Czechoslovak Mathematical Journal

The paper describes asymptotic properties of a strongly nonlinear system x ˙ = f ( t , x ) , ( t , x ) × n . The existence of an n / 2 parametric family of solutions tending to zero is proved. Conditions posed on the system try to be independent of its linear approximation.

On caustics associated with Rossby waves

Arthur D. Gorman (1996)

Applications of Mathematics

Rossby wave equations characterize a class of wave phenomena occurring in geophysical fluid dynamics. One technique useful in the analysis of these waves is the geometrical optics, or multi-dimensional WKB technique. Near caustics, e.g., in critical regions, this technique does not apply. A related technique that does apply near caustics is the Lagrange Manifold Formalism. Here we apply the Lagrange Manifold Formalism to study Rossby waves near caustics.

On caustics associated with the linearized vorticity equation

Petya N. Ivanova, Arthur D. Gorman (1998)

Applications of Mathematics

The linearized vorticity equation serves to model a number of wave phenomena in geophysical fluid dynamics. One technique that has been applied to this equation is the geometrical optics, or multi-dimensional WKB technique. Near caustics, this technique does not apply. A related technique that does apply near caustics is the Lagrange Manifold Formalism. Here we apply the Lagrange Manifold Formalism to determine an asymptotic solution of the linearized vorticity equation and to study associated wave...

On index theorems for linear ordinary differential operators

Michèle Loday-Richaud, Geneviève Pourcin (1997)

Annales de l'institut Fourier

We introduce and study the sheaf of Deligne to describe singular points of a linear differential operator D and we develop a technique based on homological algebra to prove index theorems for D .As particular cases, we obtain index theorems for D acting in spaces of multisummable series and a new proof of the index theorem of Malgrange in the space of convergent power series and of the index theorems of Ramis in the spaces of Gevrey series.We compute the values of these indices in terms of the formal...

On L w 2 -quasi-derivatives for solutions of perturbed general quasi-differential equations

Sobhy El-sayed Ibrahim (1999)

Czechoslovak Mathematical Journal

This paper is concerned with square integrable quasi-derivatives for any solution of a general quasi-differential equation of n th order with complex coefficients M [ y ] - λ w y = w f ( t , y [ 0 ] , ... , y [ n - 1 ] ) , t [ a , b ) provided that all r th quasi-derivatives of solutions of M [ y ] - λ w y = 0 and all solutions of its normal adjoint M + [ z ] - λ ¯ w z = 0 are in L w 2 ( a , b ) and under suitable conditions on the function f .

Currently displaying 1 – 20 of 70

Page 1 Next