Periodic solutions to certain evolution inequalities
We prove the existence and conditional stability of periodic solutions to semilinear evolution equations of the form u̇ = A(t)u + g(t,u(t)), where the operator-valued function t ↦ A(t) is 1-periodic, and the operator g(t,x) is 1-periodic with respect to t for each fixed x and satisfies the φ-Lipschitz condition ||g(t,x₁) - g(t,x₂)|| ≤ φ(t)||x₁-x₂|| for φ(t) being a real and positive function which belongs to an admissible function space. We then apply the results to study the existence, uniqueness...
Lors de cet exposé, nous nous intéressons à l’étude de perturbations stochastiques de certaines inclusions différentielles du premier ordre : les processus de rafle par des ensembles uniformément prox-réguliers. Ce travail nous amène à combiner la théorie des processus de rafle et celle traitant de la reflexion d’un mouvement brownien sur la frontière d’un ensemble. Nous donnerons des résultats traitant du caractère bien-posé de ces inclusions différentielles stochastiques et de leur stabilité.
We show that the Porous Medium Equation and the Fast Diffusion Equation, , with , can be modeled as a gradient system in the Hilbert space , and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.