Displaying 21 – 40 of 49

Showing per page

Periodic solutions to evolution equations: existence, conditional stability and admissibility of function spaces

Nguyen Thieu Huy, Ngo Quy Dang (2016)

Annales Polonici Mathematici

We prove the existence and conditional stability of periodic solutions to semilinear evolution equations of the form u̇ = A(t)u + g(t,u(t)), where the operator-valued function t ↦ A(t) is 1-periodic, and the operator g(t,x) is 1-periodic with respect to t for each fixed x and satisfies the φ-Lipschitz condition ||g(t,x₁) - g(t,x₂)|| ≤ φ(t)||x₁-x₂|| for φ(t) being a real and positive function which belongs to an admissible function space. We then apply the results to study the existence, uniqueness...

Perturbation stochastique de processus de rafle

Frédéric Bernicot (2008/2009)

Séminaire Équations aux dérivées partielles

Lors de cet exposé, nous nous intéressons à l’étude de perturbations stochastiques de certaines inclusions différentielles du premier ordre  : les processus de rafle par des ensembles uniformément prox-réguliers. Ce travail nous amène à combiner la théorie des processus de rafle et celle traitant de la reflexion d’un mouvement brownien sur la frontière d’un ensemble. Nous donnerons des résultats traitant du caractère bien-posé de ces inclusions différentielles stochastiques et de leur stabilité.

Porous medium equation and fast diffusion equation as gradient systems

Samuel Littig, Jürgen Voigt (2015)

Czechoslovak Mathematical Journal

We show that the Porous Medium Equation and the Fast Diffusion Equation, u ˙ - Δ u m = f , with m ( 0 , ) , can be modeled as a gradient system in the Hilbert space H - 1 ( Ω ) , and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets Ω n and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.

Currently displaying 21 – 40 of 49