On boundedness and stability of solutions of nonlinear second order differential equations in Hilbert spaces
On the segment consider the problem where is a continuous, in general nonlinear operator satisfying Carathéodory condition, and . The effective sufficient conditions guaranteeing the solvability and unique solvability of the considered problem are established. Examples verifying the optimality of obtained results are given, as well.
We investigate existence and unicity of global sectorial holomorphic solutions of functional linear partial differential equations in some Gevrey spaces. A version of the Cauchy-Kowalevskaya theorem for some linear partial -difference-differential equations is also presented.
The paper describes the general form of functional-differential equations of the first order with delays which allows nontrivial global transformations consisting of a change of the independent variable and of a nonvanishing factor. A functional equation for is solved on and a method of proof by J. Aczél is applied.
This paper deals with the system of functional-differential equations where is a linear bounded operator, , and and are spaces of -dimensional -periodic vector functions with continuous and integrable on components, respectively. Conditions which guarantee the existence of a unique -periodic solution and continuous dependence of that solution on the right hand side of the system considered are established.
In [4] W. Li and S.S. Cheng prove a Picard type existence and uniqueness theorem for iterative differential equations of the form y'(x) = f(x,y(h(x)+g(y(x)))). In this article I show some analogue of this result for a larger class of functions f (also discontinuous), in which a unique differentiable solution of considered Cauchy's problem is obtained.