Bounded and periodic solutions of nonlinear integro-differential equations with infinite delay.
In this paper, we establish some new sufficient conditions which guarantee the stability and boundedness of solutions of certain nonlinear and non autonomous differential equations of third order with delay. By defining appropriate Lyapunov function, we obtain some new results on the subject. By this work, we extend and improve some stability and boundedness results in the literature.
We consider certain class of second order nonlinear nonautonomous delay differential equations of the form and where , , , , , and are real valued functions which depend at most on the arguments displayed explicitly and is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results. This work...