Monotone iterative techniques and a periodic boundary value problem for first-order differential equations with a functional argument.
We study the existence of positive solutions to the singular boundary value problem for a second-order FDE ⎧ u'' + q(t) f(t,u(w(t))) = 0, for almost all 0 < t < 1, ⎨ u(t) = ξ(t), a ≤ t ≤ 0, ⎩ u(t) = η(t), 1 ≤ t ≤ b, where q(t) may be singular at t = 0 and t = 1, f(t,u) may be superlinear at u = ∞ and singular at u = 0.