Impulsive exponential stabilization of functional differential systems with infinite delay.
In this paper we establish sufficient conditions for the existence of mild solutions and extremal mild solutions for some densely defined impulsive semilinear neutral functional differential inclusions in separable Banach spaces. We rely on a fixed point theorem for the sum of completely continuous and contraction operators.
In this paper, impulsive stabilization of high-order nonlinear retarded differential equations is investigated by using Lyapunov functions and some analysis methods. Our results show that several non-impulsive unstable systems can be stabilized by imposition of impulsive controls. Some recent results are extended and improved. An example is given to demonstrate the effectiveness of the proposed control and stabilization methods.