On nonresonance impulsive functional differential equations with periodic boundary conditions.
We propose and analyze a nonlinear mathematical model of hematopoiesis, describing the dynamics of stem cell population subject to impulsive perturbations. This is a system of two age-structured partial differential equations with impulses. By integrating these equations over the age, we obtain a system of two nonlinear impulsive differential equations with several discrete delays. This system describes the evolution of the total hematopoietic stem cell populations with impulses. We first examine...
In this paper, we consider a class of infinite dimensional stochastic impulsive evolution inclusions driven by vector measures. We use stochastic vector measures as controls adapted to an increasing family of complete sigma algebras and prove the existence of optimal controls.
This paper concerns with the existence of the solutions of a second order impulsive delay differential equation with a piecewise constant argument. Moreover, oscillation, nonoscillation and periodicity of the solutions are investigated.