Irregular boundary value problems for ordinary differential equations
We consider Sturm-Liouville problems with a boundary condition linearly dependent on the eigenparameter. We study the case of decreasing dependence where non-real and multiple eigenvalues are possible. By determining the explicit form of a biorthogonal system, we prove that the system of root (i.e. eigen and associated) functions, with an arbitrary element removed, is a minimal system in L₂(0,1), except for some cases where this system is neither complete nor minimal.
In this paper we consider a parametric eigenvalue problem related to a vibrating string which is constructed out of two different materials. Using elementary analysis we show that the corresponding principal eigenvalue is increasing with respect to the parameter. Using a rearrangement technique we recapture a part of our main result, in case the difference between the densities of the two materials is sufficiently small. Finally, a simple numerical algorithm will be presented which will also provide...
We obtain asymptotic formulas for eigenvalues and eigenfunctions of the operator generated by a system of ordinary differential equations with summable coefficients and periodic or antiperiodic boundary conditions. Then using these asymptotic formulas, we find necessary and sufficient conditions on the coefficients for which the system of eigenfunctions and associated functions of the operator under consideration forms a Riesz basis.
In this paper I discuss quantum systems whose Hamiltonians are non-Hermitian but whose energy levels are all real and positive. Such theories are required to be symmetric under , but not symmetric under and separately. Recently, quantum mechanical systems having such properties have been investigated in detail. In this paper I extend the results to quantum field theories. Among the systems that I discuss are and theories. These theories all have unexpected and remarkable properties. I discuss...
In this paper we consider linear Hamiltonian differential systems without the controllability (or normality) assumption. We prove the Rayleigh principle for these systems with Dirichlet boundary conditions, which provides a variational characterization of the finite eigenvalues of the associated self-adjoint eigenvalue problem. This result generalizes the traditional Rayleigh principle to possibly abnormal linear Hamiltonian systems. The main tools...
In this paper we consider linear Hamiltonian differential systems without the controllability (or normality) assumption. We prove the Rayleigh principle for these systems with Dirichlet boundary conditions, which provides a variational characterization of the finite eigenvalues of the associated self-adjoint eigenvalue problem. This result generalizes the traditional Rayleigh principle to possibly abnormal linear Hamiltonian systems. The main tools...
In this paper we consider the problem where λ is a spectral parameter; p j (x) ∈ L 1(0, 1), j = 0, 1, 2, are complex-valued functions; α s;l, s = 1, 2, 3, , are arbitrary complex constants; and σ = 0, 1. The boundary conditions of this problem are regular, but not strongly regular. Asymptotic formulae for eigenvalues and eigenfunctions of the considered boundary value problem are established in the case α 3,2 + α 1,0 ≠ α 2,1. It is proved that the system of root functions of this spectral problem...
In this work, we consider the singular Hahn difference equation of the Sturm-Liouville type. We prove the existence of the spectral function for this equation. We establish Parseval equality and an expansion formula for this equation on a semi-unbounded interval.