Holomorphic solutions to linear first-order functional differential equations.
2000 Mathematics Subject Classification: 34E20, 35L80, 35L15.In this paper we study an ODE in the complex plane. This is a key step in the search of new necessary conditions for the well posedness of the Cauchy Problem for hyperbolic operators with double characteristics.
We investigate the growth and Borel exceptional values of meromorphic solutions of the Riccati differential equation w' = a(z) + b(z)w + w², where a(z) and b(z) are meromorphic functions. In particular, we correct a result of E. Hille [Ordinary Differential Equations in the Complex Domain, 1976] and get a precise estimate on the growth order of the transcendental meromorphic solution w(z); and if at least one of a(z) and b(z) is non-constant, then we show that w(z)...
We investigate how the growth of an algebroid function could be affected by the distribution of the arguments of its a-points in the complex plane. We give estimates of the growth order of an algebroid function with radially distributed values, which are counterparts of results for meromorphic functions with radially distributed values.