Page 1

Displaying 1 – 4 of 4

Showing per page

Planar flows of incompressible heat-conducting shear-thinning fluids — existence analysis

Miroslav Bulíček, Oldřich Ulrych (2011)

Applications of Mathematics

We study the flow of an incompressible homogeneous fluid whose material coefficients depend on the temperature and the shear-rate. For large class of models we establish the existence of a suitable weak solution for two-dimensional flows of fluid in a bounded domain. The proof relies on the reconstruction of the globally integrable pressure, available due to considered Navier’s slip boundary conditions, and on the so-called L -truncation method, used to obtain the strong convergence of the velocity...

Currently displaying 1 – 4 of 4

Page 1