Page 1

Displaying 1 – 17 of 17

Showing per page

On a generalized Stokes problem

Václav Mácha (2011)

Open Mathematics

We deal with a generalization of the Stokes system. Instead of the Laplace operator, we consider a general elliptic operator and a pressure gradient with small perturbations. We investigate the existence and uniqueness of a solution as well its regularity properties. Two types of regularity are provided. Aside from the classical Hilbert regularity, we also prove the Hölder regularity for coefficients in VMO space.

On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values

Nguyen Vu Dzung, Le Thi Phuong Ngoc, Nguyen Huu Nhan, Nguyen Thanh Long (2024)

Mathematica Bohemica

We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values u ( η 1 , t ) , , u ( η q , t ) with 0 η 1 < η 2 < < η q < 1 . By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case ( P q ) of (P) in which the nonlinear term contains the sum S q [ u 2 ] ( t ) = q - 1 i = 1 q u 2 ( ( i - 1 ) q , t ) . Under suitable conditions, we prove that the solution of ( P q ) converges to the solution of the corresponding...

On a phase-field model with a logarithmic nonlinearity

Alain Miranville (2012)

Applications of Mathematics

Our aim in this paper is to study the existence of solutions to a phase-field system based on the Maxwell-Cattaneo heat conduction law, with a logarithmic nonlinearity. In particular, we prove, in one and two space dimensions, the existence of a solution which is separated from the singularities of the nonlinear term.

On annealed elliptic Green's function estimates

Daniel Marahrens, Felix Otto (2015)

Mathematica Bohemica

We consider a random, uniformly elliptic coefficient field a on the lattice d . The distribution · of the coefficient field is assumed to be stationary. Delmotte and Deuschel showed that the gradient and second mixed derivative of the parabolic Green’s function G ( t , x , y ) satisfy optimal annealed estimates which are L 2 and L 1 , respectively, in probability, i.e., they obtained bounds on | x G ( t , x , y ) | 2 1 / 2 and | x y G ( t , x , y ) | . In particular, the elliptic Green’s function G ( x , y ) satisfies optimal annealed bounds. In their recent work, the authors...

On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities

Martin Lanzendörfer, Jan Stebel (2011)

Applications of Mathematics

We consider a class of incompressible fluids whose viscosities depend on the pressure and the shear rate. Suitable boundary conditions on the traction at the inflow/outflow part of boundary are given. As an advantage of this, the mean value of the pressure over the domain is no more a free parameter which would have to be prescribed otherwise. We prove the existence and uniqueness of weak solutions (the latter for small data) and discuss particular applications of the results.

On the Cauchy problem for hyperbolic functional-differential equations

Adrian Karpowicz, Henryk Leszczyński (2015)

Annales Polonici Mathematici

We consider the Cauchy problem for a nonlocal wave equation in one dimension. We study the existence of solutions by means of bicharacteristics. The existence and uniqueness is obtained in W l o c 1 , topology. The existence theorem is proved in a subset generated by certain continuity conditions for the derivatives.

On the Cauchy problem for linear hyperbolic functional-differential equations

Alexander Lomtatidze, Jiří Šremr (2012)

Czechoslovak Mathematical Journal

We study the question of the existence, uniqueness, and continuous dependence on parameters of the Carathéodory solutions to the Cauchy problem for linear partial functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative is also proved. The results obtained are new even in the case of equations without argument deviations, because we do not suppose absolute continuity of the function the Cauchy problem is prescribed on, which is rather usual assumption in the existing...

On the Cauchy problem for linear PDEs with retarded arguments at derivatives

Krzysztof A. Topolski (2015)

Annales Polonici Mathematici

We present an existence theorem for the Cauchy problem related to linear partial differential-functional equations of an arbitrary order. The equations considered include the cases of retarded and deviated arguments at the derivatives of the unknown function. In the proof we use Tonelli's constructive method. We also give uniqueness criteria valid in a wide class of admissible functions. We present a set of examples to illustrate the theory.

On the global existence for a regularized model of viscoelastic non-Newtonian fluid

Ondřej Kreml, Milan Pokorný, Pavel Šalom (2015)

Colloquium Mathematicae

We study the generalized Oldroyd model with viscosity depending on the shear stress behaving like μ ( D ) | D | p - 2 (p > 6/5), regularized by a nonlinear stress diffusion. Using the Lipschitz truncation method we prove global existence of a weak solution to the corresponding system of partial differential equations.

On the global existence for the Muskat problem

Peter Constantin, Diego Córdoba, Francisco Gancedo, Robert M. Strain (2013)

Journal of the European Mathematical Society

The Muskat problem models the dynamics of the interface between two incompressible immiscible fluids with different constant densities. In this work we prove three results. First we prove an L 2 ( ) maximum principle, in the form of a new “log” conservation law which is satisfied by the equation (1) for the interface. Our second result is a proof of global existence for unique strong solutions if the initial data is smaller than an explicitly computable constant, for instance f 1 1 / 5 . Previous results of this...

On the hierarchies of higher order mKdV and KdV equations

Axel Grünrock (2010)

Open Mathematics

The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces H ^ s r defined by the norm v 0 H ^ s r : = ξ s v 0 ^ L ξ r ' , ξ = 1 + ξ 2 1 2 , 1 r + 1 r ' = 1 . Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ 2 j - 1 2 r ' . The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < 2 j - 1 2 r ' . The results for r = 2 - so far in...

On the Neumann problem with L¹ data

J. Chabrowski (2007)

Colloquium Mathematicae

We investigate the solvability of the linear Neumann problem (1.1) with L¹ data. The results are applied to obtain existence theorems for a semilinear Neumann problem.

On the persistence of decorrelation in the theory of wave turbulence

Anne-Sophie de Suzzoni (2013)

Journées Équations aux dérivées partielles

We study the statistical properties of the solutions of the Kadomstev-Petviashvili equations (KP-I and KP-II) on the torus when the initial datum is a random variable. We give ourselves a random variable u 0 with values in the Sobolev space H s with s big enough such that its Fourier coefficients are independent from each other. We assume that the laws of these Fourier coefficients are invariant under multiplication by e i θ for all θ . We investigate about the persistence of the decorrelation between the...

Ondes progressives pour l’équation de Gross-Pitaevskii

Fabrice Béthuel, Philippe Gravejat, Jean-Claude Saut (2007/2008)

Séminaire Équations aux dérivées partielles

Cet exposé présente les résultats de l’article [3] au sujet des ondes progressives pour l’équation de Gross-Pitaevskii : la construction d’une branche d’ondes progressives non constantes d’énergie finie en dimensions deux et trois par un argument variationnel de minimisation sous contraintes, ainsi que la non-existence d’ondes progressives non constantes d’énergie petite en dimension trois.

Currently displaying 1 – 17 of 17

Page 1