Page 1

Displaying 1 – 4 of 4

Showing per page

A note on propagation of singularities of semiconcave functions of two variables

Luděk Zajíček (2010)

Commentationes Mathematicae Universitatis Carolinae

P. Albano and P. Cannarsa proved in 1999 that, under some applicable conditions, singularities of semiconcave functions in n propagate along Lipschitz arcs. Further regularity properties of these arcs were proved by P. Cannarsa and Y. Yu in 2009. We prove that, for n = 2 , these arcs are very regular: they can be found in the form (in a suitable Cartesian coordinate system) ψ ( x ) = ( x , y 1 ( x ) - y 2 ( x ) ) , x [ 0 , α ] , where y 1 , y 2 are convex and Lipschitz on [ 0 , α ] . In other words: singularities propagate along arcs with finite turn.

Currently displaying 1 – 4 of 4

Page 1