Page 1

Displaying 1 – 3 of 3

Showing per page

Generalized gradient flow and singularities of the Riemannian distance function

Piermarco Cannarsa (2012/2013)

Séminaire Laurent Schwartz — EDP et applications

Significant information about the topology of a bounded domain Ω of a Riemannian manifold M is encoded into the properties of the distance, d Ω , from the boundary of Ω . We discuss recent results showing the invariance of the singular set of the distance function with respect to the generalized gradient flow of d Ω , as well as applications to homotopy equivalence.

Global controllability and stabilization for the nonlinear Schrödinger equation on an interval

Camille Laurent (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove global internal controllability in large time for the nonlinear Schrödinger equation on a bounded interval with periodic, Dirichlet or Neumann conditions. Our strategy combines stabilization and local controllability near 0. We use Bourgain spaces to prove this result on L2. We also get a regularity result about the control if the data are assumed smoother.

Currently displaying 1 – 3 of 3

Page 1