Page 1

Displaying 1 – 9 of 9

Showing per page

Propagation et réflexion des singularités pour l'équation de Schrödinger non linéaire

Jérémie Szeftel (2005)

Annales de l’institut Fourier

Nous construisons un calcul paradifférentiel adapté à l'équation de Schrödinger qui nous permet de montrer un théorème de propagation des singularités pour l'équation de Schrödinger non linéaire en adaptant la méthode de Bony. Nous construisons également la version tangentielle du calcul précédent qui nous permet de montrer un théorème de réflexion transverse des singularités pour l'équation de Schrödinger non linéaire. Nous utilisons alors ce théorème pour calculer l'opérateur...

Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations

Kunihiko Kajitani (2000)

Journées équations aux dérivées partielles

We shall give the local in time existence of the solutions in Gevrey classes to the Cauchy problem for Kirhhoff equations of p -laplacian type and investigate the propagation of analyticity of solutions for real analytic deta. When p = 2 , his equation as the global real analytic solution for the real analytic initial data.

Propagation of singularities for the wave equation on manifolds with corners

András Vasy (2004/2005)

Séminaire Équations aux dérivées partielles

In this talk we describe the propagation of 𝒞 and Sobolev singularities for the wave equation on 𝒞 manifolds with corners M equipped with a Riemannian metric g . That is, for X = M × t , P = D t 2 - Δ M , and u H loc 1 ( X ) solving P u = 0 with homogeneous Dirichlet or Neumann boundary conditions, we show that WF b ( u ) is a union of maximally extended generalized broken bicharacteristics. This result is a 𝒞 counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary,...

Propagation of singularities in many-body scattering in the presence of bound states

András Vasy (1999)

Journées équations aux dérivées partielles

In these lecture notes we describe the propagation of singularities of tempered distributional solutions u 𝒮 ' of ( H - λ ) u = 0 , where H is a many-body hamiltonian H = Δ + V , Δ 0 , V = a V a , and λ is not a threshold of H , under the assumption that the inter-particle (e.g. two-body) interactions V a are real-valued polyhomogeneous symbols of order - 1 (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the...

Propagation of uniform Gevrey regularity of solutions to evolution equations

Todor Gramchev, Ya-Guang Wang (2003)

Banach Center Publications

We investigate the propagation of the uniform spatial Gevrey G σ , σ ≥ 1, regularity for t → +∞ of solutions to evolution equations like generalizations of the Euler equation and the semilinear Schrödinger equation with polynomial nonlinearities. The proofs are based on direct iterative arguments and nonlinear Gevrey estimates.

Propagation of weak discontinuities for quasilinear hyperbolic systems with coefficients functionally dependent on solutions

Małgorzata Zdanowicz, Zbigniew Peradzyński (2013)

Annales Polonici Mathematici

The propagation of weak discontinuities for quasilinear systems with coefficients functionally dependent on the solution is studied. We demonstrate that, similarly to the case of usual quasilinear systems, the transport equation for the intensity of weak discontinuity is quadratic in this intensity. However, the contribution from the (nonlocal) functional dependence appears to be in principle linear in the jump intensity (with some exceptions). For illustration, several examples, including two hyperbolic...

Currently displaying 1 – 9 of 9

Page 1