Page 1

Displaying 1 – 1 of 1

Showing per page

Quantitative stability for sumsets in n

Alessio Figalli, David Jerison (2015)

Journal of the European Mathematical Society

Given a measurable set A n of positive measure, it is not difficult to show that | A + A | = | 2 A | if and only if A is equal to its convex hull minus a set of measure zero. We investigate the stability of this statement: If ( | A + A | - | 2 A | ) / | A | is small, is A close to its convex hull? Our main result is an explicit control, in arbitrary dimension, on the measure of the difference between A and its convex hull in terms of ( | A + A | - | 2 A | ) / | A | .

Currently displaying 1 – 1 of 1

Page 1