Trudinger–Moser inequality on the whole plane with the exact growth condition
Trudinger-Moser inequality is a substitute to the (forbidden) critical Sobolev embedding, namely the case where the scaling corresponds to . It is well known that the original form of the inequality with the sharp exponent (proved by Moser) fails on the whole plane, but a few modied versions are available. We prove a precised version of the latter, giving necessary and sufficient conditions for the boundedness, as well as for the compactness, in terms of the growth and decay of the nonlinear function....