Editorial comment on the paper Huashui Zhan, Junning Zhao: Some remarks on Prandtl system
Since matrix compression has paved the way for discretizing the boundary integral equation formulations of electromagnetics scattering on very fine meshes, preconditioners for the resulting linear systems have become key to efficient simulations. Operator preconditioning based on Calderón identities has proved to be a powerful device for devising preconditioners. However, this is not possible for the usual first-kind boundary formulations for electromagnetic...
Since matrix compression has paved the way for discretizing the boundary integral equation formulations of electromagnetics scattering on very fine meshes, preconditioners for the resulting linear systems have become key to efficient simulations. Operator preconditioning based on Calderón identities has proved to be a powerful device for devising preconditioners. However, this is not possible for the usual first-kind boundary formulations for electromagnetic...
Dans l'article, on a donné quelques conditions suffisantes pour l'unicité locale et globale de la solution du problème. On a construit une solution variationnelle du problème par la méthode de Newton-Kantorovitch et la méthode du prolongement continu avec ces conditions suffisantes pour l'unicité.
We recall the definition of Minimizing Movements, suggested by E. De Giorgi, and we consider some applications to evolution problems. With regards to ordinary differential equations, we prove in particular a generalization of maximal slope curves theory to arbitrary metric spaces. On the other hand we present a unifying framework in which some recent conjectures about partial differential equations can be treated and solved. At the end we consider some open problems.
We consider the Fourier first boundary value problem for an infinite system of weakly coupled nonlinear differential-functional equations. To prove the existence and uniqueness of solution, we apply a monotone iterative method using J. Szarski's results on differential-functional inequalities and a comparison theorem for infinite systems.