Page 1

Displaying 1 – 8 of 8

Showing per page

Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices

Sören Bartels (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...

Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices

Sören Bartels (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...

Currently displaying 1 – 8 of 8

Page 1