Page 1

Displaying 1 – 7 of 7

Showing per page

Harmonic averages, exact difference schemes and local Green’s functions in variable coefficient PDE problems

Owe Axelsson, János Karátson (2013)

Open Mathematics

A brief survey is given to show that harmonic averages enter in a natural way in the numerical solution of various variable coefficient problems, such as in elliptic and transport equations, also of singular perturbation types. Local Green’s functions used as test functions in the Petrov-Galerkin finite element method combined with harmonic averages can be very efficient and are related to exact difference schemes.

Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time

Alexei Lozinski, Jacek Narski, Claudia Negulescu (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed...

Homogenization of a monotone problem in a domain with oscillating boundary

Dominique Blanchard, Luciano Carbone, Antonio Gaudiello (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the asymptotic behaviour of the following nonlinear problem: { - div ( a ( D u h ) ) + | u h | p - 2 u h = f in Ω h , a ( D u h ) · ν = 0 on Ω h , . in a domain Ωh of n whose boundary ∂Ωh contains an oscillating part with respect to h when h tends to ∞. The oscillating boundary is defined by a set of cylinders with axis 0xn that are h-1-periodically distributed. We prove that the limit problem in the domain corresponding to the oscillating boundary identifies with a diffusion operator with respect to xn coupled with an algebraic problem for the limit fluxes.

Currently displaying 1 – 7 of 7

Page 1